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ABSTRACT 

The problem of rapidly computing trajectories of spacecrafts from 
their initial conditions has become very important. Classical methods 
rely almost exclusively on precise integration techniques, but results 
thus obtained are too slow over extended arcs ,  even on high-speed com
puters. Moreover, great accuracy is often unnecessary. Here we pre
sent a new method of computing approximate ephemerides of a small body 
(minor planet o r  artificial satellite). This method is 10 to 15 times 
faster  than the well-known methods of Encke or Cowell. The e r r o r s  a r e  
small  (e.g., of the order of one part  in a thousand) and the results con
verge to the N-body point-mass solution for small time steps. It is also 
possible to account for non-point-mass effects; this, however, has not 
yet been implemented. 
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A FAST METHOD OF ORBIT COMPUTATION 

by 

K. Stumpff* and E. H. Weiss** 

Goddard Space Flight Center 

INTRODUCTION 

The new method of computing perturbations described below has been developed in response 
to a need for a means of quickly approximating a spacecraft ephemeris. In particular, a quick 
computation of the orbit of Explorer 33 (described in Example 3 of "Results") was required. The 
results need not be exact; small e r ro r s ,  of the order of one part in a thousand, a r e  permitted. 
The special perturbation method yields: 

a. 	 The fast exact solution, o r  an even faster approximation, to the N-body 
point- mass problem. 

b. Fast approximations to many non-point-mass problems. 

The exact solution to the non-point-mass problem can be obtained by numerical integration. This 
solution, however, has not yet been implemented. 

Reference 1 describes a forerunner of the present technique, used as early as 1942 to com
pute heliocentric orbits of minor planets under the influence of Jupiter and other major planets. 
The proof in this report is shorter, more direct, and more convenient for modern applications 
than its earlier counterpart. Both methods a r e  variants of the well known Encke special pertur
bation technique. Encke's perturbations a r e  defined as the deviations of the planet's coordinates 
from those of an osculating Kepler ellipse and are of the order hZ, where h = t - t o  is the inter
mediate time beyond to, the epoch of osculation. The present technique (as in Reference 1)com
bines several Keplerian orbits to form an intermediate orbit that includes essential parts of 
Encke's perturbations. The deviations of the actual from the intermediate orbit a r e  termed "rest 
perturbations." They a r e  of the order h 4  and therefore very small for small h. Encke's per
turbations and Stumpff's rest perturbations cannot be solved in closed form; they a r e  solved by 
classical numerical integration. 

*Prof.  Emeritus,  Univ. of Goettingen and Senior Post -Doctoral  Res ident  Research A s s o c i a t e ,  U. S. National Academy of Sc ience-
National Research Counci l .  

**Advisory Mathematician IBM Federal  Systems Divis ion,  P. 0. Box 67, Greenbelt, Maryland. 
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NOTATION AND EQUATIONS 

The results about to be derived are valid for N point-mass bodies. For simplicity the formu
las are given for the 4-body case (e.g., earth, moon, sun and spacecraft), but the proof is readily 
extended to N bodies. The formulas exhibit remarkable symmetry. 

Let each of the subscripts i ,  j ,  k, and 1 assume the value 0, 1, 2, or 3 with the proviso that dif
ferent subscripts be distinct. Denote the four bodies by Q i  and their masses by m i  . The vectors 
from Qi to Q a r e  q i  j ,  and their magnitudes are r = I q i  1 .  Without loss of generality, we can 
use canonical units; then the Gaussian constant equals unity. Assume that the bodies act as point 
masses. Then the vectors q i  satisfy the differential equations 

The 12 combinations i ,  j from 0, 1, 2, 3, contain only three linearly independent vectors q i j  (for 
instance q, ,  , q I 2 ,  q , ,  ), as there exist six identities q i j  = - q j i  , and three independent equations 
of the form 

Here and elsewhere, q i  ( 0 )  = q i  ( to) r e fe r s  to the time t ; q i  = q i  ( t )  refers to the time 
t = t o  t h . A special solution of Equation 1 is determined by the initial values 

Use square brackets to denote Keplerian orbits that osculate q i j  at t = to. Then 

[q .  .(O)l = q i j  (0); [ S i j  (011 = 4 i j  ( 0 )
' I  

a r e  the conditions of osculation. 

The osculating Keplerian orbits satisfy the differential equations 

where 

Equation 4 can be applied to any combination of two different subscripts i, j ,  k, and 1. Now 
define the vectors s i  ( = - s  i> by 
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Substituting Equation 5 in Equation 4 and rearranging, one obtains 

- q . . r . . - '  = - [ q i j 3 + s. . .  (6 )' 1  
' 1  ' 1  m i  + m .  

Using Equation 6 to eliminate all expressions of this form from the right side of Equation 1 gives: 

m k  m k
q i j  = [ ; i i j I  + -

m i  + m k  
[; i ikl  t - [;ikjl + -m l  [ ; i i 1 I

m k  t m j  m i  t m l  

This can be written 

6.. [{ . . I  + S . .  t R . .= 
1 1  1 1  1 1  ' 1  ' 

where 

m ks . .z ___ 
11 m i  t m k  m i  + m l  m l  + m j  

The first and second integrals of [q i jI and S i  can be obtained from the well known properties of 
Keplerian conic sections. See Reference 2, or Chapter V of Reference 3. The integration of R i  , 
however, can be effected only by numerical methods. The first and second integrals of Equation 
7a a r e  

1 1  1 1S , j  = [ S i j l  t S  i j  + R . .  + a , .  ' 

9 . .  = [q  
1 1

. I  t S i j  + R i j  + a i j h
1 1  

To determine the constant vectors a i  and b j ,  evaluate Equation 8 at t o ,  from which, by 
Equation 3, 

(s i j ( o )  t ~ ~ ~t a i j  0= 0 ,) 

S i j ( 0 )  + R i j  ( 0 )  t b i j  = 0 .  

Without loss of generality, R i j  (0) and R i j  (0) can be equated to zero, since non-zero values can be 
absorbed by a i  and b i j  . Thus 

a i j  = -S i j (0 ) ,  b i j  =-S . . (O)  (9)1 1  
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Substituting Equation 9 in Equation 8 gives 

q i j  = [ q i j  1 + P..+ R . .'I 1 1 '  

where 

I I  1 I  (0 ) .  (11)p i j  = s i j-Sij(0),  P i j  = S i j  -h S . . ( O )  3.. 

P i j  is termed the approximate perturbation, and R~~ the rest perturbation. Equation 5 shows 
that s i j  ( 0 )  = 0, whence R i j  ( 0 )  = 0 in view of Equation 7c. Similarly'Rij ( 0 )  = 0, as can be seen by 
differentiation, and hence R i j  is of the order h4. For sufficiently small  values of h, R i j  and R~~ 

in Equation 10 can be ignored, if  desired. The resulting approximations a r e  

Exact results a r e  given by the formulas 

where 4:j and q:j a r e  obtained by Equation 12, and R i j  and R i j  a r e  the first and second inte
grals of R i  , defined by Equation 7c. 

USAGE 

There are three different ways to compute (accurately or approximately) the ephemerides of 
celestial bodies by the set  of formulas just given. For computational simplicity, one of the four 
bodies is placed at the center of the coordinate system. This body is denoted by Q, and is called 
the central body. Let r be a dummy subscript that can assume the values 0, 1, 2, or 3 as long as 
c f r. Then the initial conditions are given by the known values q c r(0) and q,, (0) ,and our prob
lem is to find q c r  and q c r  . By vector addition any other vector between the four bodies can be 
determined since 

where 
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Method A 

Method A, described in Reference 1, is a variant of Encke's method of computing special per
turbations. This method is especially effective when the numerical integration uses difference 
tables; this mode of integration was especially popular before the advent of high-speed computers. 

Compute the six osculating Keplerian orbits [ q i j l  and their velocity vectors [q. . ]  at t = t o  tnh 
1 1  

( n =  1, 2 . .., N), where h is a conveniently chosen constant step length. Then compute S , , ( t )  and 
S,, ( t ), the two-body solutions of Equation 7b satisfying the initial conditions given by Equation 3. 
Compute P,,( t)  and P c , ( t )  by Equation 11, and obtain the coordinates of the intermediary orbits 
qf,  ( t )  and G,* , ( t )  by Equation 12. The rest perturbation R , , ( t )  can be obtained by integrating 
Equation 7c twice, using the classical method of numerical integration by differences, with R(0)  = 

R (0) = 0 as initial conditions. The start of the integrating scheme of differences can be achieved 
without iteration: Calculate s ( t )  from 

instead of Equation 5 for small nh. Since s i j  - s y j  is of order h4 it follows from Equation 7c 
that the e r ro r  of R i j  is also of order h4,  Therefore the e r r o r  in R i j  is of order h 6  and can be 
neglected for small intermediate times. This is a remarkable advantage over Encke's method, 
where iterations at the start cannot be avoided. 

Method A is effective if (1) none of the bodies closely approach any other body, (2)  the mag
nitudes of R remain substantially smaller than the magnitudes of the complete perturbations, P+R.  

Thus the calculations a r e  restricted to relatively small time intervals. 

Method B 

Let h,  = t ,  - t o  be a small step length, for which R ( t ,  ) is very small. Compute
. *  

q, ,  ( t  ) z sf ,  ( t l  ) , q, ,  ( t l  ) 2 q, ,  ( t , )  by Method A, neglecting the rest  terms. Use these approx
imations of q ( t  ) and 4 ( t  ) as new initial conditions, and compute q( t ) , q( t 2 )  at t = t + h , 
again neglecting the r e s t  terms, etc. The results will be accurate as long as the neglected r e s t  
t e rms  do not accumulate beyond a specified tolerance. Thus Method B, which is simple and effi
cient, can be used to approximate orbits when great accuracy is not needed. 

Method C 

Use Method B to compute i:r( t o  t 4h,) as well as qf,  ( t o  t n h , )  for n = 1, 2, 3, 4. Then, 
using s :j defined by Equation 14 instead of s ,compute Rcr ( t o  t n h, ) by Equation7q and obtain 

R ( t o  t 4h,) and R ( t ,  t 4h,) by integration. For example, Stirling's five-point formula with 

R ( O ) =  0, and with the initial conditions R (  t ,) = R ( t o)= 0, yields 
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h0
R( to  + 4 h 0 )  = -45 [64R(t0 + h o )  + 24R(to t 2 h 0 )  + 64R(t0  + 3h0) t 14R(t0  t 4 h 0 ) ]  

h02
R ( t o  t 4 h 0 )  = - 45 [192R(to + ho)  + 48R(t0  t 2 h 0 )  + 64R( t0  + 3 h o ) ] .  

Then use Equation 13 to obtain q ( t  1 )  = :*(t ,)  + R ( t  1), q ( t l )  = q * ( t , )  + R ( t l )  at t l  = t o  + 4 h 0 ,  

With these vectors as new initial conditions proceed to t = t + 4h 1, t = t + 4h2,  etc. 

This method delivers accurate ephemerides for an extended range of time as long as the step 
lengths h n  are sufficiently small, though they may be noticeably larger than those used in Method 
B. If the h n  surpass a certain limit, e r r o r s  will occur because: 

1. The supposition s = s* is no longer valid. This may be cancelled by iteration, if  desired. 

2. 	 Integration Equations 15 use interpolating polynomials of the fourth degree. The formulas 
lose accuracy for large h, but this e r ro r  can be avoided by the use of integration formu
las of a higher degree. 

The relative smallness of the r e s t  perturbations permits the use of rather large time steps. 
Proper time-step control significantly reduces the computing time; considerable effort was spent 
in selecting the llbest" time-step. The four time-step cri teria given below were specialized to the 
following bodies and units: 

1. Q o  : spacecraft 
Q1 : earth 
Q 2  : moon 
Q 3  : sun 

2. 	 Length is measured in earth radii, time in canonical units of 806.813645 seconds, and the 
mass of the earth is taken as unity. The four time-step cri teria are:  

a. h is constant. This is best avoided unless the orbit is nearly circular. 

b. 	 h = (K/Q)  1'4 ,where K is an input parameter, and Q (a theoretical overestimate of the 
r e s t  perturbations) is given by 

3.  h = (AtW)/B ,where W = Min ( r l 0  , C r 2 0 ) ,  and A, B, C are input parameters. 

4. hnew = (1/2)( ID/V4R I t 1) hold  ,where D is an input parameter, and 

V 4 R l O  = R l o  ( t o  t 4 h )  - 4R10 ( t o  t 3 h )  t 6R10 ( t o+ 2 h )  - 4R10 ( t o  + h) .  
Large changes in step size a r e  avoided by the condition 0.5 h o l d  5 hnew5 3.5 h o l d .  
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The following section gives numerical examples. In Tables 3, 4, and 5, the column headed 
"time-step criterion" contains either: the fixed value of h; or K; o r  A, B, C; o r  D. In general, best 
results are obtained with the A, B, C, or D criteria. 

Test results were computed not only with large step sizes but also with very small ones. It 
was always possible to converge to results that a r e  invariant under further reduction of the time-
step. These converged results may rightly be considered the accurate ephemerides of the 4-body 
point-mass problem. 

RESULTS 

The following five examples illustrate the results. 

Example 1 

Method A was first used by K. Stumpff (Reference 1)in 1942 to compute special perturbations 
of the minor planet (931) Whittemora by Jupiter. Some numerical results are taken, abbreviated, 
from Reference 1, to illustrate the difference between this method and the classical method of 
Encke (see Reference 4, p. 378ff). The formulas of Section 1 may be used with masses 

m o  = 0 (minor planet), 

ml = 1 (sun), 

m 2  = 1/1047.35 (Jupiter), 

m 3  = 0 (as no other perturbing planet has been taken in account). 


The initial epoch is t o= 1920, April 29.0; and h ,  the constant step of integration, equals 
40 days = 40k canonical units (k = 0.0172021). 

Table 1 gives the heliocentric equatorial x-coordinates of the minor planet for t = t o  + nh 

( n  = 0, 1, 2, . . ., 8). It lists 

P = approximate perturbation (Equation ll), 
R = rest  perturbation obtained by numerical integration of Equation 7C, 

PtR = complete perturbation, 
D = complete perturbation derived by Encke's method. 

Table 1illustrates: 

1. 	The very slow increase of R for small intermediate times, compared with the 
rapid increase of P and D ,  

2. u = P + R,except for small  deviations due to rounding. 
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Table 1 Example 2 

Perturbations of the x-
Whittemora for t Method B is used to compute the orbit of 

the same minor planet, (931) Whittemora. 
The computations extend to 1600 days (ap-

0.0 0.0 0.0 0 proximately 80 percent of one revolution) 
8.6 0.0 8.6 8 beyond the epoch 1920, April 29.0. Table 2 

38.5 0.4 38.9 39 lists the terminal heliocentric rectangular 
95.5 3.9 99.4 99 coordinates of the planet in A.U. for several 

182.9 17.9 200.8 201 constantvalues of h ,as well as the true values 
301.4 55.0 356.4 356 for comparison. The true values a r e  obtained 
448.8 133.4 582.2 581 almost perfectly when h = 20 days, and the 
620.8 276.6 897.4 896 e r r o r  barely exceeds A.U., when the 
807.8 513.6 1321.4 1320 computation is performed in 10 steps of 160 

I NOTES: 1. t = 1920 April 29.0. 
days each. 

2. Resul ts  expressed i n  10 -’A . U .  I The remaining examples involve the ap
plications of Methods B and C to a spacecraft 

Table 2 in the gravitational field of earth, moon and 

Coordinates of (931) Whittemora at sun. The orbits a r e  highly eccentric, closely 
t o  + 1600 Days, in A.U. approaching the earth or the moon. Hence, 

h in days X 
variable step lengths should be chosen. 

I 

20 0.6061220 2.299933 -0.2915877 


40 0.60612 01 ~ 2.299943 -0.2915872 Example 3 

50 0.6 061180 2.299950 -0.2915866 Compute the orbit of Explorer 33, 
80 0.6 061054 2.299979 -0.2915840 launched July 1, 1966. Integrate for 180 days 

100 0.60609 1 5  2.3 00004 -0.29 15813 beyond to ,  the epoch of computation, where 
160 0.6060304 2.300097 -0.2915702 

t o  = 1966, July 31. The spacecraft describes 
~ 

Exact Value 0.6061222 2.299931 I -0.29158791 over 12 highly eccentric trajectories around 

NOTES: 1. t = 1920 April 29.0. 
I the earth and several times closely ap

2. R e s u l t s  expressed i n  A.U.  
proaches the surfaces of the earth and the 
moon (to within approximately 3 and 5 earth 
radii, respectively). The earth-spacecraft 

separation is the criterion that measures the effectiveness of the method. The exact 4-body point 
mass separation is 138801.68 km at t o  + 170 days and 437108.24 km at t o  + 180 days. Table 3 

gives the deviations of the earth-spacecraft separations at these times, for several runs involving 
different time-step controls. The deviation always attains its maximum near t o  + 170 days. 
Table 3 also gives the machine execution time and the number of steps used in the computation. 
The last line gives the equivalent information for  the JPL-Holdridge program (Reference 5) which 
accounts for planetary and non-point-mass perturbations. The agreement, it will be noted, is quite 
satisfactory. 
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Table 3 


Explorer 33 : Deviations in Earth Spacecraft Separation. 


Deviation of earth- Deviation of earth-
spacecraft distance spacecraft  distance Time No. of com-

at  to + 170 days at t o  + 180 days (seconds) puting steps 
(km) Ocm) 

2495 915 50 Not Available 

766 279 88 Not Available 

245 90 157 Not Available 

41 11 421 2440 

8146 3052 38 218 

940 286 53 310 

722 220 61 356 

616 186 70 408 

86 27 86 502 

42 13 122 711 

1 1 190 1104 

0 0 363 2108 

930 436 about 15 min Not Available 

* - Accounts for planetary and non-point mass  effects. 

Method Time-step 
cri terion 

K = 1 0 - ~  

K = 

K = IO-’ 

4h = 3 h r s  

A = O  
B = 1.5 
C = 1.5 

C 	 A = O  
B = 2.5 
c = 3.5 

C 	 A = O  
B = 2.5 
C = 1.5 

C 	 A = O  
B = 2.5 
C = l  

C 	 A = O  
B = 4  
C = 2.5 

C 	 A = O  
B = 4  
C = l  

C 	 A = O  
B = 8  
C = 1.5 

C 	 A = 5  
B = 16 
C = l  

JPL-Holdridge* 
-

I 

The inverse relation between speed and accuracy can be seen best from Figure 1. It plots 

maximum deviation of the earth-spacecraft distance versus machine time for Explorer 33, com
puted 180 days beyond the epoch. Note that Method C is superior to Method B in this example and 
probably in others. 
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NOTES 

1. All machine t imes refer to the IBM 7094 
Model 1. 

2. 	 The number of time-steps is available for 
Method C only. A time-step extends 
from t i  to tiel = t i  + 4hi.  

Example 4 

Consider a typical earth-moon trajectory 
integrated for 2.5 days beyond the epoch. The 
trajectory s t a r t s  less than 450 km from the 
surface of the earth, Le., at third-stage cut
off. The exact earth-spacecraft separation 
for the point-mass earth, moon, sun problem 
equals 362,141.35 km at t o+ 2.5 days. Table 
4 lists the effects of different time-steps 
and includes the results of the JPL-Hold-

COMPUTING TIME (sec) ridge program, which accounts for planetary 

Figure 1 -Maximum deviation i n  earth-spacecraft 
perturbations. The results agree very well 

separation for Explorer 33. with the point-mass JPL-Holdridge program. 

Example 5 

Consider a typical lunar orbit with the following initial characteristics : aposelenium = 8634 
km,periselenium = 3443 km,period = 702 min, e = 0.429. The integration extends for 180 days 
beyond the epoch July 4, 1966. Table 5 gives the terminal discrepancy in moon-spacecraft separa
tion for different time-steps. The exact value is 8562.37 km. There is close agreement between 
the simple 4-body solution and the J P L  program, even though the latter accounts for harmonics 
and planetary perturbations. 

COMPUTER PROGRAMS 

Four double precision computer programs have been written in FORTRAN IV. They a r e  en
titled STUMPFF1, flUMPFF2, STUMPFF3, and STUMPFF4, and are reproduced in Appendix A. 
This section briefly describes points of interest to users  of the programs. 

The programs generate their own ephemerides; this facilitates programming and saves 
memory locations. 

10  

- . ~ - -.---... .. . , ,__--. . . . .I , . ,I .... ., 



Table 4 

Typical Earth-Moon Trajectory: Deviations in Earth-Spacecraft Separation at t o+ 2.5 Days. 

Deviation of earth- Time No. ofspacecraft distance (seconds) steps Method Time- step Commentscriterion(km) 


0.73 1.44 7 D = 5 X 

0.37 1.63 8 D = 2 X 

0.06 1.99 10  D = 9 x 1 0 - ~  
0.03 2.18 11 D = 7 x 
0 3.26 17 D = 2 x 
0.51 about one 

minute JPL- Holdridge 

2791.98 about one 
minute JPL-Holdridge 

STUMPFFl 

Planetary perturbations
included. Point-mass 
bodies assumed. 
Planetary pe rturbations 
included. Earth and moon 
harmonics included. 

The program is set  up to compute Example 2 by Method B. The central body is the sun; lo
cations XO, YO, ZO, XDO,YDO, and ZDO contain the initial position and velocity values of (931) Whitte
mora; X10, Y10, Z10, XDlO, YDlO, and ZDlO contain the initial values for Jupiter. The unit of 
mass is the mass of the sun; the mass of Jupiter = 1/1047.35; the mass of the minor planet equals 
zero. The unit of length is the A.U. and the unit of time 58d.13244. The step size, in days, is in 
location DIFF. The program prints the number of days beyond the epoch, and the coordinates of 
the minor planet and Jupiter. The program stops when TAU t TAUMAX, where TAU = 0.0172021 
X DIFF. 

STUMPFFS 

The program is set up to compute Example 3 by Method B. Q o  is the spacecraft; Q,  is the 
earth, which is the central body; Q, is the moon; and Q, is the sun. Locations YlO(I), Y12(I), and 
Y13(I), (I = 1, 2, 3, 4, 5, 61,containthe initial values of q l O ( O ) ,  qlo(0), q1,(0), ql, (01, q l 3 ( O ) ,  q13(0)  
in canonical units. The unit of length is the mean earth radius of 6378.165 km, the unit of mass is 
the mass of the earth, and the unit of time equals 806.813645 seconds. The program prints the 
initial conditions. Then it prints four lines every Nth day, namely: 

(Line 1) q , ,  , il0number of days since epoch, 

(Line 2, 4 1 2 7  s 1 2 )  

(Line 3) q 1 3 ,  413 2 

(Line 4) Q ,  rl0 r z o ,  number of days since epoch. 

11 



Table 5 

Typical Lunar Orbit: Deviations in Moon-Spacecraft Separation at to + 180 Days. 

Time No. of 

(minutes) steps 


1068 6.9 2416 


13.8 4814 


17.5 6104 

23.0 8020 

25.2 8762 

87.5 30459 

28 29.8 9230 
16 35.8 11108 
0 68.1 21108 

28 about 120 

about 175 

C 

CI C 
C 

JPL-Holdridge 

JPL-Holdridge 

Time-step I Commentscriterion 

A =  2 
B =  1.5 
C = l  
A = 2  
B = 3  
C = l  
A = 5  
B = 5  
c = -1 
A = 2  
B = 5  
C = l  
A = 6  
B = 9  
c = -1 
A = 2  
B = 19 I 

C = l  
D = 3 x i o - '  
D = 2 x 
D = 6 X 

Includes harmonics and 
planetary effects. 
Encke mode used. 
Includes harmonics and 
planetary effects. 
Cowell mode used. 

The results a r e  printed in km and km/sec. At present, the program prints every tenth day. This 
can be changed by altering "10.D00" in the two consecutive instructions: 

IJI = IDINT (TIMED/lO.DOO), 
IJ2 = IDINT (TIMEDN/lO.DOO). 

The program stops TIMEMX days beyond the epoch. 

STUMPFF3 

The program computes Example 5 by Method C, using the A, B, C time-step criterion. The 
bodies are numbered as in STUMPFF2 and the units of length, mass, and time a r e  defined as in 
STUMPFFZ. The f i r s t  printout gives the initial conditions followed by A, B, C, and m l. Subse
quent printouts a r e  four lines each: 
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(Line 1) q,,  , ;Ilo,number of days since epoch 

(Line 2) q , , ,  i12 
(Line 3) q 1 3  7 4 1 3  

(Line 4) Contains five words. The first is immaterial; the others are r ,,, r 2 0 ,  number of 
days since epoch, and number of computing steps. 

There a r e  eight input cards per case, and two or more cases may be stacked. The fields of 
the input cards end in columns 16, 32, 48, and 64, and contain the following floating point input: 

Card 7 has four fields that specify A, B, ONEDAY, and TIMEMX. The only field of Card 8 speci
fies C. The time-step criterion uses  A, B, and C; ONEDAY governs the frequency of the printing; 
and a case is terminated after TIMEMX days of computation. If column 72 of Card 7 equals 1, a 
new case will be processed after the present case; the last case must contain a blank in column 72 
of Card 7. 

STUMPFF4 

The program computes Example 5 by Method C, using the D time-step criterion. Everything 
is as in STUMPFF3 except: 

1. Input Card 8 does not exist. Card 7 contains D, h I n l t  , ONEDAY, TIMEMX. D governs the 
time step; h i n i t  gives the initial value of h ;  and ONEDAY and TIMEMX a r e  as in 
STUMPFF3. 

2. The line printed after the initial conditions contains D, h m i n  , one immaterial word, and m l  . 
Goddard Space Flight Center 

National Aeronautics and Space Administration 
Greenbelt, Maryland, October 2, 1967 

3 11-02-01 -01 - 5  1 
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Appendix 

Symbolic Listing o f  FORTRAN IV Programs 
STUMPFFl, STUMPFF2, STUMPFF3, and STUMPFF4 

S J O B  0 5 1 0  S T U M P F F l  t j Y  E.H. k E I S S  R I G G S  B L C G  X 7 3 1 9  
$ P A U S E  
S E X E C U T E  I R J U B  
SIBJOB G O  9 L U G  IC 

S T U W P F F  1 B Y  E .H . i rE ISS K I G G S  BLCG X 7 3 1 9  
SIBFTC P b I N  L I S T , R E F , C t C K  

D O U R L E  P R E C I S I O N  
O B K ~ D I F F ~ T A U M A X , T A U , T A ~ l ~ X O , Y ~ ~ Z C , X C ~ ~ Y D C ~ Z C O ~  
D X 1 0 ~ Y 1 0 ~ Z l O ~ X l ~ 1 0 ~ Y D i ~ ~ ~ Z ~ l O ~ ~ K A ~ O ~ ~ ~ A P l ~ ~ K A P 2 ~  
O T E 1 ~ T E 2 ~ T E 3 , T E 4 ~ T E 5 , T t 6 ~ T ~ 7 ~ T ~ ~ ~ T E 9 ~ T E l C ~ T ~ l i ~ T E i Z ~  
O S X , ~ Y , S Z , S C X , ~ ~ ~ ~ , S U ~ , S I G ~ , S I G Y , S I G ~  
BK= O.C17,?021D00 
D IFF= 1OO.CCO 
W K ITt ( 3 , 3 0 1  

30 F O R M A T  ( iH1 I 
T A U w A X = 2 a . C O O  
T A U =  G.DCC 
T A U l = O K * C I F F  
X 0 = - 3 . 2 4 4 4 6 4 0 0 0  
Y @ = . 2 8 8 2 t C D C O  
Z O = . 5 7 2 6 1 3 O C O  
X D O = - . 1 5 4 6 7 1 U O O  
Y D O = - . 5 0 & 4 1 8 U @ O  
2 0 0 = . 0 6 3 9 4 8 D C O  
X l O = - 4 . 0 ' + 6 1 ' 3 D C O  
Y 1 0 = 3 . 1 1 8 S 3 C C O  
Z 1O =  1. 4  3 9  e 0 l ) C  0 
X D l C = - . 1 9 7 2 6 D C O  
Y D 1O=- .2 0 13 b i l C O  
Z D l C = - . 0 8 1 6 2 3 0 0  
i j K A " O =  1.CCCO 
C K A P l =  1 . C C C 3 / i O 4 7 . 3 5 U C C  
B K A p 2 =  l . C C C O t C K 4 P l  
T E L = D S B R T ( Q K A P 2 ) /  ( C K a 4 C . D C O )  
X D l C = X D l C * T E i  
Y D l r = Y D l C * T E l  
Z D l O = L C l C * T E l  

3 1  	T A U =  T A U +  T A U 1  
CALL SC:5 1( T A L I 1 9  X O  9 Y O p L 3 ,  XDC,  Y O O r  Z D O , Q K A P 2 ,  

1 S X , S Y , S L , S C X , S C Y , S ~ Z , S I G X , S t G Y , S I G ~ )  
T E l =  X C + S X  
T E 2 =  Y O + S Y  
TE3= Z O + S Z  
T E 4 =  X C O + S C X  
T E 5 =  Y C O + S D Y  
T E 6 =  Z O O + S C Z  
T E 7 z X O - X  1 C  
T E B = Y @ - Y  1C 
T E ~ = Z O - Z  i c  
T E l O = X D O - X C L O  
T E l l = Y C O - Y D l O  
T E l . ? = L C O - Z C i C  
C A L L  S ~ O l ~ T A U l ~ T t 7 ~ T E ~ ~ T E 9 ~ T t l O ~ T E l l ~ T ~ l ~ ~ ~ K ~ P l ~  

1 S X r S Y , S Z , S C X , S I ) Y , S U L r S I G X , S I G Y , 5 I G L )  
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T E l = T E l + S I G X  
T E Z = T E Z + S I G Y  
T E 3 = ‘rE 3 + S IG Z 
T E 4 = T E 4 +  S C X  
T E S = T E 5 +  SOY 
T E 6 = T E 6 +  SDZ 
C A L L  S U H L ( T ~ U ~ , X Z O T Y L C T Z L ~ ~ ~ ~ ~ ~ , ~ C ~ O T Z D I O T ~ K ~ P ~ ~  

1 S X T S Y , S Z , S C X , S D Y I S U L I S I G X , ~ I G X , S I G Y ~ S I ~ Z )  
XO= T E l +  S K A P l * S I G X  
Y O =  T E 2 +  C K A P l t S I G Y  
Z O = T E 3 + Q K A P l * S I G Z  
X D O = T E 4 +  S K A P l * S U X  
Y D O = T E S +  CKAP?.*SDY 
Z D O = T E 6 +  S K A P l * S O Z  
x10= X l O + S X  
Y 1 0 =  Y l C + S Y  
z10= L l O + S Z  
X D l O = X C l O + S D X  
Y D l f ! = Y C l C + S D Y  
LDlC=Z010+SDL 
W R I T E  ( 3 1 3 5 )  T A U ~ X O ~ Y O ~ Z O T X C O ~ Y C O , Z D O  

35 F O R F ’ A T ( l X 6 H  T A U  = . D 1 5 . 7 , 1 3 H  S ; ” A L L  B C D Y  = , 6 ( D 1 5 . 7 , 1 X ) )  
Y O Z O v  L O 1 0  

36  F O R M A T  [ 1 X 3 4 H  J U P I T E R ;  r b ( C l 5 . 7 r l X ) )  
I F ( T A U . L E . T A U P A X ) S C  T C j  3 1  
R E T  I!9 N 

U R I  T �  ( 3  1 3 6  X 1 0 ,  Y l O ~ Z l C , X C l G ~  

E N D  
S I B F T C  S U E 1  L I S T I R E F , C ~ C K  

S U B R C U T I k E  S U B 1  ( T A U , X O T Y O T L C , X D C T Y C ~ , Z I ; ~ , ~ ~ A P ,  
1 S X T S Y I S L , S D . ~ , S C Y , S D L , ~ I ~ X , S I G Y , ~ I ~ Z )  

O O U P L E  P R E C I S I O N  
0 T A C T X C , Y C T Z O T X C O , Y O C ~ Z C C , C K A P ~  
D SXISY,SZISDX,SGYISGZ,SIGX,SIGY,SIGY,~ IGZ,  
D K O ~ G M U O , C K S I O , S I G O , E T A O , O ~ E O , E P ~ O T ~ ~ T A O T ~ H ~ O , C H I O ~  

D T E M P ~ , T E V P Z T  

D Z * D F L T A , C L , C Z , C ~ T  

D F M , G T F D , G D ~ ’  


K O = C S Q R T ( X O * * 2 + Y O * * Z + . Z C l * * 2 )  

Q M U O =  C K A P / R i ) * * 3  

QKSIO= Q M L O * T A U * * Z  

SIGO= ( X C * X D O +  Y O * Y i ) G +  Z O * Z C O ) / K C * * Z  

E T A C =  S I G C * T A U  

O M E O = l X D 3 * * 2 + Y D O * * 2 + Z D O * * 2 ) / R O * * 2  

E P S C =  C M E C - PsXUC 

Z E T 4 O = E P S C * T A U * * Z  

RHOO= G M U O - E P S G  

C H I C =  R H C C * T A U * * 2  

C A L L  S U ~ ~ ( E T A O ~ Z E T ~ O , C H I O T Z , C E L T A ~ C ~ ~ C ~ ~ C ~ )  

F M =  C 2 * Q K S I O * Z * * Z  

G=TAU*Il.C00-(C3*PKSIC*Z**3~~ 

fD=-(Cl*OKSIO*Z)/(DtLTA*TAU) 

GDM= C Z * Q K S I O * Z * * ~ / I . ) E L T A  

S X =  G * X D O - F M * X @  

S Y =  G * Y D C - F M * Y O  

S Z =  G * Z D C - F Y * Z O  

S O X =  F D *  XO- S C M * X D C  

S O Y =  FG* YO- GCM*YCi ,  

S D Z =  F C *  ZO- G C M * Z C A  

T E M P l = - Q K S I O * Z * * Z  

T E M P 2 =  C 3 * Z * T A U  

S I G X =  T E P P l * ( C 2 * X O + T t M P Z * X C O )  

S I G Y =  T E i P P L * ( C 2 * Y O + T t H P Z * Y C O )  

S I G Z = T E M P l + ( C 2 * Z O + T t r P 2 c Z D O )  
R E T U R N  
E N D  
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SIBFTC SUR2 L I S T ~ R E F I D E C K  
S U B R O U T I R E  SUB2 (ETAvZETATCHX,ZvCELTAvClpC2tC3) 
DOUeLE P R E C I S I O N  

0 GILA* Z ,  C 1 ,  C 2 1  C 3 ,  E T A ,  Z E T A ,  C k I ,  
D D E L T A * T O L l 1 G H  

I T E ? = C  
z =  1.0000 
T O L = l  .D-OE! 

201  	I T E R = I T E R + l  
Q L A = C H I * Z * Z  
C2~.5DC0*~1.OCO-~GLA/L2.COC)xll.CCG~*~l.CCO-~~LA/3O.UCO~*

1 ~ 1 ~ O C C ~ ~ O L A / 5 6 ~ U 0 0 ~ * ~ l ~ C C O ~ ~ ~ L A / 9 O ~ C O O ~ ~ ~ ~ ~  
C3= ~ l . D C O / 6 . D 0 0 ~ * ~ 1 . U 0 0 - ~ ~ L A / 2 O . O C C ~ * ~ l . O C O - ~ ~ L A / 4 2 ~ ~ ~ 0 0 ~ *  

1 ~ 1 . D O C - ~ ~ L A / 7 2 . 0 0 0 ~ * ~ l . C C C - ~ Q L A / l l O . D O O ~ ~ ~ ~ ~  
C l = l . . O C 3 - ( Q L A * C 3 )  
D E L T A = l . D C O + C l + E T A + L  + C Z * Z E T A * Z * * Z  
QH= C 2 * E T A * Z * * 2 + C 3 * L E T A * Z * * 3 + Z - l . O C O  
Z=Z- Q H / E E L T A  
I F ( D A B S ( Q H ) . L E . T O L l ) R E T U R N  
I F ( I T E R . L E . 1 O ) G O  TO 2 0 1  
R E T U R N  
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.I, 1 1 1  I ......-._.-__. . 

SJOB 0510 STUMPFF2 BY E.H. WEISS RIGGS BLDG X 7 3 1 9  
SPAUSE 

SEXECUTE IeJOB 

SIBJOB GG * L O G I C  
S I B F T C  M A I N  L IST~REFINODECK 

DOURLE P R E C I S I O N  
D E R K I T I ~ E C N ~ I T O N ~ I T D I  
DXlOtX12rX13tXTEPPtXKEPtXDELt 

D M l r ~ 2 ~ M 3 ~ P 1 2 ~ M l 3 r Y Z 3 i M 2 F l 2 t ~ 2 F 2 3 t V 3 F l 3 t t ' 3 F 2 3 t  

DCMLtCt'V~CPT~YlOtYl2tYl3tTIMEDtTIPEMX~ 

D T A U C ~ T A U ~ R L O ~ R ~ O ~ T E M P ~ Q ~ R ~ O E ~ T R ~ C E ~ ~  

DZ19 22 r Z 3 t  2 4  t Z 5 t Z 6  t 

O L t C l t C 2 t C 3 t O E L T A t H t  

D K E 2 r R t K S 1 , E T A r Z E T A t C h I  


C O C H O N  X 1 0 ( 1 2 ) ~ X 1 2 ( 1 2 ) ~ X 1 3 ( 1 2 ~ t X T E M P ( 6 1t X K E P ( S ) t X D E L ( 6 ) t  
C M l r W 2 t M 3  tt'1.2. Y 1 3 r  M23 9 M 2 F l Z  t M2F23  t M3F 1 3 r M 3 F 2 3  t 
C C M L t C C V t C C T t Y l 0 ( 6 ) r Y l 2 ~ 6 ) t Y l 3 ( 6 ), T l M t D * T I P E M X t  
C T A U D ~ T A U t R l O ~ R 2 0 t T E M P t C t R l O t 2 1 R Z C E 2 (  
C L 1 t 7 2 i r ? 3 t Z 4 i Z 5 r Z O ~  
C L t C l i C 2 t C 3 t D E L T A t H t  
C K E 2 ~ R ~ K S I ~ E T A ~ Z E T A t C H I t O U M ( l O C O )  

C STUVPFF2 B Y  E h  WEISS KIGGS 
Y 1 0 1 1 ) = . 1 8 3 5 2 6 4 C D 0 6  

Y 1 0 1 2 ) = - . 2 4 0 9 4 3 3 8 0 0 0  

Y 1 0 ( 3 ) = - . 3 6 4 5 2 7 6 4 D 0 5  

Y 10 1 4  )=.  l C O 4 4 1 4 6 O C l  

Y1015)= - .32C81304DCO 

Y 1 0 ( 6 ) = - . 1 5 1 6 8 0 0 L D 0 0  

Y 1 2  1 1  1 = .2 1 3 8 4 7 3 4 0 0 6  

Y 1 2 1 2 ) = - . 2 9 6 1 9 0 5 3 C 0 6  

Y 1 2  f 3 )  =-. 16430464C)06  

Y 1 2 ( 4 ) =  . 8 4 6 0 0 6 9 6 D 0 0  

Y 1 2 ( 5  ) =  .47626001DCC 

Y l 2 I 6  1 = .17218044DCO 

TIMFMX=181.0CO 

Y 1 3 1 1 ) = - . 9 3 8 5 6 1 3 4 D O o  

Y 1 3 1 2 ) =  . l C 9 4 9 7 9 8 D C Y  

Y 1 3  1 3 ) =  . 4 7 4 8 6 1 2 9 0 0 8  

Y13  1 4  ) = - . 2 2 9 2 0 5 2 0 0 0 2  

Y13151=- .16789843DCZ 

Y 1 3 ( 6 3 = - . 7 2 @ 1 7 6 8 1 C O l  

CML=637R.165000  

CMT-806 .613645000  

CMV=CWL/CCT 


C INPUT I S  IN KILOMtTERS A N C  SECONDS. 

C MULTIPLY CANONICAL bY CPLtCMT OR C V V t  T C  OBTAIN IPETRIC 

C 	 TAUC I S  IIL DAYS. TAU IS C b h O N I C A L .  

ERR=l.D-O6 
Q = l  .D-07 

M l = l  .OCO 

M2=1.000/81.30150C52DCO 

M3= 3 3 2 9 5  1.2658DCO 

M12=Ml+M2 

M 1 3 = M l + P 3  

M23=M2+M3 

M 2 F l Z = P 2 / P 1 2  

M 2 F 7 3 = P 2 / P 2 3  

P3F 13=M3/r '13 

Y 3 F ? 3 = C 3 / P 2 3  

2 1=.9000 
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25 


26 
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6 1  


10 

11 

12 


13 


1 4  
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Z2= . 9 D C O  

23=. 9 D C O  

Z4=.9DCO 

2 5 =  . 9 O C O  

Z6=.9CCO 

DO 2 5  I=1*3 

X10( I )=Y 1C( I )  / C M L  

X12( I ) = Y  12 ( I )  / C M L  

X131I)=Y13(I)/CML 

x10 (1+3)= Y 1 0 (  1+3)/CMV

x12(1+3)=Y12(1+3)/cl~v 

X1311+3)=Yl3(1+3)/CMV 

CONT INLE 
TIMED =O.CCO 
~ K I T t ( 3 r ~ 6 ) ( Y l O ( I ) r I = l r 6 ) r T I M ~ ~  
k R I T E ( 3 r l 9 ) 1 Y 1 2 ( I ) * I = l r 6 )  
k R I T E ( 3 r ? 9 ) ( Y 1 3 ( I ) r I = l , 6 )  
FOR”AT(lHlr6D16.0rD16.8)
TAU=CSCRT(CSORT(ERK/C)) 

TAU=CMI~l(TA~*lCO.DCO) 

TAUO=TAU*CPT/86400.0CO

TIPFDN=TI~EC+TAUD 

IJl=IDINT(TIMED/lO.DCO) 

I JZ=IDINT( TIiY;EDN/lO.CC0 1 

IF(TJl.EC.IJ2)GO TC 60 

I J2=ID I N  T (TI N E O N )  

TIMFDN=IJZ 

TAUC=TIKECN-TIMED 

TAU=TAUO+S640O.DCO/C~T 

TIMFD=TIPEDN 

I PK-1 

CONT I NUE 

CALL SUB 1 ( XlOr M L  r Z l  1 

DO 10 I = l r 6  

X10(1+6)= XKEP(1) 

CONTINUE 

CALL SUB1(XlZrMl2r Z2 1 

00 11 I = l t 6  

XlO(I+6)=Xl0( 1+6)+M2FL2*XDEL(I) 

Xl2I I+6)= X K E P  ( I ) 

X13(1+0)=P2FlZtXDEL(I) 

CONT I N l i E  

CALL SUHl(X13rM13rL3) 

0 0  12 I = 1 r 6  

XlO(I+O)= XlO(I+6)+M3Fl3+XCfL(I) 

Xl2II+6)= XlZ(I+6)+~3F13*XCEL(I) 

X13(1+6)= X13(I+b)+AKEP(I) 

CONTINUE 

DO 13 I = l r 6  

XTEHP(I)=XlO(I)-X12(1) 

C O N 1  I NllE 

CALL SUBI(XTEPPIMZ*Z~) 

DO 14 Jzl.6 

X l O ( J + 6 ) = X l O ( J + 6 ) + X D E L ( J )  

CCNTINUE 

DO 15 Jz1.6 

XTEVP(J)=XLO(J)-X13(J)

CONT I NUE 

CALL SUO 1( X TEMP r :I 3 r L 5 1 

00 16 J=lr6 
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-- I 11111111I 111 1111111 111 I I I 111111111111 I 111 I I I I IIIII I 1  I 111 11.1 111 11.m. 11.1.1, .,,.,, ,,......--.. 

X l O ( J + 6 ) = X l O ( J + 6 ) + X u E L ( J )  

1 6  	 CONTINLE 

00 1.7 J=l,6 
XTEPP(J)=X13(J)-Xl2(J) 

17 	 CONTINUE 

CALL SLBl(XTEPPtX23tZ6) 

DO 79 J = l t 6  
X l Z ( J ) = X l 2 ( J + 6 ) - P ! 3 F Z 3 * X C t L ( J )  
X 1 3 ( J ) = X l ? ( J + t ) + M 2 F L 3 * X D t L ( J )  
XlO (J )=XlO [ J+6 1 

29 	 CONTINUE 
DO 18 J=1,3  
Y1C (J)=XlC (J)*CVL 
YlZIJ)=X12(J)*CML
Yl3(J)=Xl3(J)*CPL 
Y 10 I J+3 1 =XlC ( J+3 1 * C M V  
Y12(J+3)=XlZ(J+3)+CMV
Yl3(J+3)=Xl?(J+3)*CMV 

18 	 CONTINUE 

R1OEZ=X1C(1)+*2+X10(2)**2+XlC(3)**2 

R20E2=(XlC(l)-X12(1) )**2t(X10(2)-Xl2(2) )**2+(X10(3)-X12(3))*~2

RlO=DSCRT(KlOEZ) 

RZO=GSGRT(420�2) 

G = ( ~ 2 / ( ~ 1 O E 2 + ~ 2 O E 2 ) ) * ~ ~ l / R l O + ~ l / ~ 2 ~ ~ +  


1 ( ’ 2 / 3 6 C C . C O O ) + ( ~ l / K 1 0 * * 3 + M 1 / ~ 2 C * * 3 ) + 

2 ( ~ 3 / 2 3 4 C O . D 0 0 * ~ 3 ) * ( M 2 / G 2 O E 2 + ~ 1 / R l O t 2 )  

RlO=HlC*CPL 

R20=K20*CPL 

IF(TPR.EC.O)GU TO 5 2  


k R I T E ( 3 , 2 C ) ( Y L O ( I ) ~ 1 = 1 ~ 6 ) ~ T l ~ t D  

~ R I T E ( 3 t 1 9 ) l Y l 2 ( I ) ~ I = l ~ 6 )  

LJRITE(3t 19)(Y13(I ) , I = l t 6 )  


19 FORVAT(1k ,tDl6.R)

20 FOR’AT(lkCt7Dl6.d) 


k R I T E ( 3 , 2 e ) C , K l O , R 2 U , T I F E D  
28 FOR’AT(1H t4D16.8) 

65 	 C C h T I N U E  

IF(TIHED .LE.TIMtWX)GC TC 9 
STOP 

60 	 TIMEC=TIPEDf< 

IPR=O 

GO TU 61 

E V D  

SIBFTC S U P 1  LISTtREF,NOCECK 
SUBQOUTIhE S U B 1  ( X , M , L )  
DOU9LE P R E C I S I O N  

DX(6 1 v P ,  Z t 


C X l O , X 1 2 ~ X 1 3 ~ X T ~ ~ P t X K t P t X D E L ~  

UM1,”2 t C3 tP12 t M13,P23,W2F12, P2F23rY3F13r C3F23r 

D C M L , C P V t C P T ~ Y l O t Y 1 2 ~ Y l 3 ~ T I P E G ~ T I ~ E ~ X t  

D T A U C ~ T A U ~ R ~ O T R ~ O , T E P I P ~ Q ~ R ~ C ~ ~ V R ~ C E ~ ~  

DZ1 t 22.23 t 24125 t L b  t 

DL,Cl,C2rC3,CELT4,Ht 

DREZrR,KSItETAtZETAiCHI 

COCPON X 1 C ( 1 2 ) r ~ 1 2 ( 1 2 ) t X 1 3 ( 1 2 ~ t X T E M P ( 6 ) 
vXKEP(6)vXCEL(6)*


C~lt‘ZtM3t~12,P13,M23, N2FI.21 M2F23t M3F13tM3F23t 

C C M L t C P V ~ C P T t Y 1 0 ( 6 ) ~ Y L 2 o , Y 1 3 ( O ~ ~ T I M E U ~ T I V E M X ~  
C T A U C ~ T A U , R l O ~ R 2 O ~ T E M P p G , K l O E 2 , R 2 C E 2 ,  

C21,72,23tZ4,25t26, 

CLtCl,C2rC3tCELTA,Ht 


20 




21 
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800 FORvAT(3C16.8) 

R E A ~ ( 2 , 8 ( 2 ) A T * B T , C N t C A Y * T I P E C X , C C R ~  

802 F O R C A T ( ~ C ~ ~ . ~ , ~ X I I L )
REAE(2t803)C 

8 0 3  FOR~AT(Ult.8)
CML=6378.165000 

CMT=( ( 6 3 7 8 . 1 6 5 C C C 1 * 3 ) / . 3 $ 8 ~ 0 3 2 D C t )  

CMT=CSCRT(Cb’T)

CMV=CPL/CCT 


C I N F U T  IS I h  KILOPETERS Ah0 SECChCS. 

C MULTIPLY CAhCkICAL B Y  Ct’LtCCT C K  CMV, T C  C e T A I h  VETRIC 

C TAUr I S  I h  D A Y S .  TAU IS CPhChICAL. 


POhF=l.OCC 

P l = 1  .cco 

M2=1.DCO/@1.3C15CO520CO

M3=y32951.2658DC0

C12=Cl+MZ 

C 1 3 = M  1+M3 

M23=C2+P? 

C2FlZ=P2/C12 

P2F23=C2/C23 

M3F13=C3/C13 

C3F73=P3/C23 

TICFD =O.CCO 

COUhT=C.CCO 

TAUZ=C.DCC 

@ N E S A Y = ( C h E C A Y * 8 6 4 C O . C C O ) / C ~ T  
TOTrAY =O. CCC 

ShT=C.CCC 

k R I T t ( 3 r 2 t ) ( Y l O ( I ) r I = l ~ 0 ~ ~ T I P E ~  

h R I T E ( 3 , 1 9 ) ( Y l 2 ( I ) r I = l ~ 6 )  

h R I T ~ ( 3 ~ 1 9 ) ( Y l 3 ( I ) , I = l ~ 6 )  


26 F O R ~ A T ( l ~ l i t D 1 6 . 8 r C l t . 8 )
kRITE(3r8Cl)AT,BTrCtPl 

80 1 FORCAT(4k AT=,016.8*2X,4H I?T=,Dlt.8p2X,3H C=*C16.8r2Xt 
15H “1 = v C 1 6 . 8 )  
RWGT(l)=721.CCO
RWGT(2)=476.000 
RWGT(3)=245.DCO

RkGT (4)=l8.CCO 

RCkCT(1)=64.DCO

RDkCT(2)=24.OCO

RDWrT(3)=04.DCC

HDh~T(4)=14.DCC 

h=6. CCC 

TAU=Ik+A T ) / @ T  

9 CON1 I NLE 
COLhT=COChT+l.COU 
TSQ24C=(TAC**2)/240.CCC

TAb45=TAL/45.CCC

DO ? 5 0  I = l , C :  
RDlCF(I)=C.CCO
ROl?F(I)=C.CCO

RDl?F(I)=C.CCC

RCDIOF(I)=C.DCO
RODlZF(1 )=C.DCO 
RCD13F(I)=C.DCO 

350 	 CON1 I NLE 
CO 341 J=lr4 
TAUh=TAUF+TPC 

23 




25 


61 

C 
C 
C 

100 

C 
C 
C 

110 

C 
C 
C 


120 


13 

C 

C 

C 

130 


15 

C 

C 

C 


140 


DO 35 I=lr3 

BX10(I)=YlO(I)/CCL 

ex1z(I)=v12(II/cPL

BX17(I)=Y13(I)/CCL

Bxla(I+3)=Y1o(I+3)/cCv

BX12(I+3)=Yl2(I+3)/CCV 

BXl?(I+3)=Yf3(1+3)/C~V 

C G N T  INLE 

A=J 

TAU=A*TAL 

IPR=1 

CCN T I NLE 


INPLT/Pl?XlO CUTPL T /  XlOtCELlO 


CALL SLB1( EX 1 O t C l )  

DO 10C 1 ~ 1 9 6  

XlC(I)=XKEP(I)

CEL?O(I)=XCEL(I) 

CON1 I hLE 


IhPLT/P’l+C2tX12 OLTPLT/ Xl2tCELl2 


CALL SLBl(BXl2,i”l2) 

DO 11c I = l , 6  

Xl2 I I )=XI(EP ( I )  

DEL12(I)=XCEL(I)

CONTI \ LE  


I N P1. T / C 1+ C 3 t X 13 tiLTPLT/ X13rCEL13 


CALL SCBl(BXl3tP13) 

CO 120 I = l r 6  

Xl3(I)=XKEP(I) 

DEL?3(I)=XCEL(I)

CChT I I v L E  

00 13 I = l r 6  

X T E C P ( I ) = R X l O ( I ) - e X L 2 ( 1 ) 

COhTINUE 


INPLT/C2r>lC-X12 CUTPUT/ X20rDEL2C 


CALL SLBl(XTEPPtP2) 

CO 1 3 0  1 ~ 1 9 6  

XZO(I)=XKEP(I) 

DEL?O(I)=XCEL(I)

CCNTINLE 

DO 15 C = 1 ? 6  

XTECP(M)=BXlO(M)-@Xl3(C) 

C O h T  INUE 


INPLT/C3rXlC-X13 OLTPUT/ X30vCEL30 


CALL SLBl(XTEPPtP3) 

00 14C 1 ~ 1 . 6  

X30(I)=XKEP(I) 

CEL?O(I)=XCEL(I)

CONTINLE 

GO 17 C = l r 6  
X T E ” P ( M ) = B X 1 3 ( ~ ) - B X 1 2 ( M )  

24 



1 7  C O N T I N L E  
C 
C I N P L T / P ~ + C ~ V X ~ ~ - X ~ ~ C U T P L T /X 2 3 ~ 0 E L 2 3  

C 

C A L L  S L B l ( X T E Y P * M 2 3 )  
DO 150 I = l * 6  
X23(I)=XKEP(I) 
D E L ? 3 ( I ) = X O E L ( I )  

1 5 0  C O N T I N L E  
C 
C CCCPUTE E P S l O  ElC=CEL2C+DEL3C+C2/(Vl+P’2)*CELl2+(M3/(kll+M3) 

C * D E L U 3  

C 


C 
C 
C 

C 
C 
C 

190 
C 
C 
C 
C 

C 
C 
C 
C 

25 




250 
C 
C 
C 
C 
C 
C 
C 
C 
C 

2 6 0  

3 4 0  
34 1 

3 7 0  

3 8 0  

3 9 0  
69 

1 8  

C O N T I N L E  

26 



R l C F 2 C = X 4 F L O ( l I * * 2 + X 4 F L 0 o + r 2 + X 4 F 1 0 ( 3 ) . ~ 2  

R 2 O F 2 C =  ( X 4 F  LO ( 1) - X 4 k  1 2  ( 1 )  ) + * 2 +  ( X 4 F l O t  2 ) - X 4 F 1 2  ( 2  1 ) * * 2 +  ( X 4 F  10 ( 3  1 - X 4 F  


l l 2 ( 7 ) ) * + 2  
Q l O C = O S Q R T ( K l C E 2 C )  
R 2 O C = D S Q R T ( H 2 O E 2 C )  
k = C V L N l ( R l O C v C * R 2 C C )  
T A U = ( h + A T ) / B T  
I F ( S k T - l . C C C ) 1 C C 6 ~ 1 C O l ~ l C O 6  

1006 I F ( ~ N � O A Y - ( T A L N + A * T A L ) ) l C C C , l C O 5 ~ ¶  
1005 SWT= 1 .COC 

GC T b  9 
l O C 0  	T A U = ( O N E O A Y - T A U N ) / A  

S W T = 1  .DOC 
G O  T O  9 

1001  T O T C A Y = T C T D A Y + G N E C A Y  
T D A Y C L = ( T C T C A Y * C C T ) / ~ ~ ~ C C . C C C C  
SWT=O.COC 

T I I F C = T O P Y C L  

I F ( I P R . E C . O ) G G  T O  6 5  

h R I T E ( 3 ~ 2 C ) ( Y l O ( I ) r I = l ~ 6 ~ ~ T I P E D  

h R I T E ( 3 ~ 1 ¶ ) ( Y 1 2 ( I ) ~ I = l ~ 6 )  

kRITE(3rlS)(Yl3(11,1=1,6) 


19 F O R r A T ( 1 k  ~ 6 D l 6 . 0 )  
20  F O R f ‘ A T ( l I + C , 7 0 1 6 . 8 )  

2050 F O R f ’ A T ( 1 P  3 C 2 4 . 1 6 )  
~ K I T E ( ~ ~ Z ~ ) C X ~ O I K L C ~ R Z O ~ T I C E C ~ C O ~ ~ T  

2 8  F G R V A T ( 1 k  , 5 0 1 6 . 8 )
I F ( ~ ~ I ~ T ( T I ~ E C X ) - I D I h T ( I C n Y C L ) ) 
l C O 3 , 1 0 C 3 , 1 0 0 2  

1002 	C C h T I N L E  
T A L N = O . D C C  
GO T O  9 

1003 I F ( ~ O R E . E C . 1 ) G O  T C  9 C O  
6 5  C O N T I N L E  

S T O P  
EN0 

S I B F T C  S U P 1  L I S T , R E F I ~ C C E C K  
S U B R O C T I h E  S U R 1  ( X t f ” )  
C O L P L E  PRECISIOY 

O X (  6 1 s P ,  
C E R R I T I P E C ~ ~ I T C N , I T C , A , C X ~ O ,  
O X ~ C , X ~ ~ , X ~ ~ , X T E P P I X K E P * X L E L ~  
C S T Z x l C ~ S T 2 X l 2 ~ S T 2 X 1 3 ~ S T Z X 2 C l ~ S T 2 X 2 C ~ S T Z X 2 3 ~  
O C l ~ ~ 2 , M 3 ~ C 1 2 , P 1 3 , ~ 2 3 ~ C 2 F l 2 ~ C 2 F 2 3 , ~ 3 F l 3 , ~ 3 F 2 3 ~  
O C ~ L ~ C ~ V ~ C C T ~ Y l O ~ Y l 2 ~ Y l 3 ~ T I f ’ ~ C ~ T I ~ E f ’ X ~  

C T A L ~ ~ T D U ~ R L C ~ R L O , T E M P , ~ ~ ~ l C � 2 ~ ~ 2 C E 2 ~  

O L , C l , C 2 , C 3 , C E L T A , H , X F K 1 C 1 X P F R L O ,  

O X F R 1 2 ~ X F R 1 3 ~ X F R 2 0 ~ X F ~ 2 3 ~ X F R 3 C , X A F ~ l 2 ~ X A F f ~ l 3 ~ X A F R 2 O ~ X A F R 2 3 ~ X A F R 3 O ~  

O ~ E 2 ~ R , K S I ~ E T A ~ Z E T A ~ C ~ I , R 1 3 1 R 2 3 , R 3 0 1 Z ~  

O R l O F 2 C ~ R 2 0 E 2 C ~ R 1 0 C ~ K 2 C C  


CGUeLE P R E C I S I O h  k k l C , h h l 2 t k k l 3 , ~ h 2 C 1 ~ ~ 3 O , h ~ 2 3 ,  
D F F l C ~ F F l Z , F F l 3 ~ F F 2 O , F F 3 C , F F 2 3  
O O U P L E  P R E C I S I O N  

D ~ , T C T O A Y , T C A Y C U i O h E C A Y , S h T , T A U N , C C U ~ T , A T , E T ,  
D K O l C ~ R C l Z ~ R ~ 1 3 ~ R C C l O ~ R D C l 2 ~ R C O l 3 ~  

C O E L 1 O ~ C E L 1 2 ~ D E L l ~ ~ P O ~ E ~ X Z O ~ C E L 2 C ~ X 3 C ~ O E L 3 O ~ X 2 3 ~ O E L 2 3 ~  
O E P S 1 O ~ X A S T l O ~ E P S l 2 ~ X A S T l 2 ~ E P S l 3 ~ X A S T l 3 ~ X A S T 2 O ~ X A S T 2 3 ~ X A S T 3 O ~  
O R A S T 1 O ~ R A S T 1 2 ~ R A S T l 3 ~ R A S T 2 C ~ ~ A S T 2 3 ~ R A S T 3 O ~ S l O ~ S l Z ~ S l 3 ~ S 2 O ~  
0S23~S30,RCOT1O,RDOTi2,RD~T13,RC1C~,R012~,~013F,RCC10F,RDD12F, 

D R C 0 1 3 F ~ K W C T , R C W G T , T ~ ~ 2 4 C ~ K 4 F l O ~ R 4 F l 2 ~ R 4 F l 3 ~ T A L 4 5 ~ R O 4 F l O ~  
C B X ~ C , B X L Z I B X ~ ~ ,  

27 



28 




.22841895006 -.28612319OC6 -.16078232C06 

.8 2437821DCC .50846563CCC .let37202CCO-.31957216008 .13642131CC¶ .59157903C08 
-.2862P154DC2 -.564072@2CCl -.2&463687COL 

2.CDCO i9.CCCO 1O.OCCO 179.0DCO 

1 .CDCC 


S F M S Y S  
SPAUSE 

29 



30 




800 

802 
803 

C 
C 
C 

2 6  

801 

9 


F O R w A T ( 3 C l 6 . 8 )  
K E A C ( 2 r 8 0 2 ) A T , 8 T , C N t C A Y 1 T I I Y I E r X 1 C C 1 7 E  
F O R ” A T ( 4 C l b . t j r 7 X , I l )  
f O R w A T ( D 1 6 . 8 )  
C M L - 6 3 7 8 . 1 6 5 0 0 0  
CMT=((6379.16500Git3)/.39a6032C06) 

C M T = D S C K T ( C P T )  
C M V = C P L / C P T  

I N D U T  I S  I N  K I L C C t T E R S  ANU S k C C h C S .  
M U L T I P L Y  C A h U N I C A L  b Y  C P L p C M T  CK CMVI T C  O P T A I N  P E T K I C  
T A U C  IS I N  C A Y S .  T A U  IS C A h C h I C A L .  
IPR=O 
P O N F = l . D C O  

M l = L  .DO0 

M Z = I  .D C O / 8  I. 3 C  1 5 O C 5 2 1 l C O  

M 3 = ? 3 2 9 5  1 . 2 6 5 8 D C O  

M12=Ml+M2 
M 1 3 = M l + M  3 

M 2 3 = M 2 + M ?  

M 2 F  12=M2 /P12 

M 2 F ? 3 = C 2  / P 2 3  

M 3 F  1 3 = C 3 / P  1 3  

M 3 F  7 3 = C 3  / P 2  3 

T I M F D  = @ . C C C  

couv r = o .  c c o  

T.AUN=C.UCC 

O N E ~ A Y = ( O h E D A Y * 8 6 4 C C . C O O ) / C P T  
T O T C A Y = O . C C O  

SWT=O.OOC 

W R I T E ( 3 , 2 6 ) ( Y l O ( I ) , I = l , 6 ) , T I ~ ~ U  

h R I T E ( 3 ~ 1 9 ) ( Y L 2 ( I ) ~ I = 1 , 0 )  
W R I ~ E ( 3 ~ 1 9 ) ( Y 1 3 ( 1 ) ~ 1 = 1 ~ 6 )  

FOR~AT(1Hlr6016.8~Cl6.8) 

W R I T ~ ( ~ ~ ~ G L ) A T ~ D T , C I P ~  
FORMAT(4HCAT=rD16.8,2X,4H B T = , U l b . t j r 2 X , 3 H  C = , C l 6 . S , 2 X ,  

15H VI. =rC16.0) 
R W G T ( l ) = 7 2 1 . 0 0 0  

R W G T ( Z ) = 4 7 6 . D 0 0  

K W G T ( 3 ) = 2 4 5 . O C O  

K W G T ( 4  )=la. C O O  

KOWGT ( 1 )  = 6 4 .  D O 0  

R O W F T  ( 2  1 = 2 4  .DCO 

K D W G T  ( 3 )  = 6 4 .  UCO 

R O W C T ( 4 ) = 1 4 . U 0 0  

D E L ( 1 ) = - 4 . D C O  

O E L ( 2 ) = 6 . C C O  

D E L ( 3 ) = - 4 . O C O  

D E L ( 4 ) = 1 . C C C  

W=6.DCC 

T A U = B T  

C O N T I N U E  

C O U h T = C O L N T + l . D C O  

T S E ? 4 0 = (  T P L * * 2 )  / 2 4 0 . D C O  

T A U 4 5 = T A U / 4 5 . 0 0 0  

0 0 ’ 3 5 0  I = l t 6  

R D l @ F ( I ) = C . O O O  

K D l Z F ( I ) = C . C O O  

R D l 3 F ( I ) = C . C C O  

R C D I O F ( I I = C . D C O  

R D D 1 2 F ( I ) = O . D C O  


31 


I 




I ,  I I ..I. . . . . . . _ _  - ... 

350 


2 5  

61 

C 
C 
C 

100 

C 
C 
C 

110 

C 
C 
C 

120 


1 3  

C 
C 

R D O 1 3 F ( I  ) = O . D O O  
C O N 1  I K U E  
D E L T = O . O C C  
DO 341 J = l r 4  
T A U Y = T A U h + T A U  
00 25 I = 1 9 3  
R x l C ( I ) = Y l O ( I ) / C u L  
B X 1 2 (  I ) = Y 1 2 ( I  ) / C F L  
B X 1 3 ( I ) = Y l 3 ( I ) / C M L  
B x l c ~ I + 3 l = Y l o ~ I + 3 ~ / c ~ ! v  
H X 1 7 ( 1 + 3 ) = Y 1 2 ( 1 + 3 ) / C r V  
B X 1 3 ( I + 3 ) = Y l 3 ~ 1 + 3 ) / C P V  
C U h T  I N U E  
A = J  
T A U = A * T A L  
C O h i T I N U E  

I N P L T / M l r X l C  t i L T P U T /  X l U t D E L l O  

C A L L  S U B l ( B X L 0 , P l )
DO 100 I = l t t  
X l O ( I ) = X K E P ( I )  
f ) E L ? O (  I )  = X C E L (  I )  
C O N T I N L E  

I N P L T / t ' 1 + C Z ~ X 1 2  U C j T P U T /  X 12, B E L 1 2  

C A L L  S U B l ( B X 1 2 9 M 1 2 )  
00 110 1 ~ 1 ~ 6  
X l Z ( I ) = X K E P ( I )  
D E L l Z ( I ) = X C E L ( I )  
C O N T I N U E  

I N P U T / M 2 , X l C - X 1 2  O b T P L T /  X L O v D E L Z O  

C A L L  S U d l  ( X T E M P T N ?  1 
00 130 I = 1 9 6  
X Z O ( I ) = X K E P ( I  1 
D E L ? O (  I ) = X O E L  ( I  1 

1 3 0  	 C O N T I R U E  
00 15 P = 1 ~ 6  
X T E ~ P ( C ) = @ X l O ( M ) - S X 1 3 ( M )  

15 C O N T I N L E  
C 
C I N P L T / ~ ~ TX l C - X l 3  C U T P U T /  X 3 0  E E L 3 0  
C 

C A L L  S U B 1  ( X T E E 1 P v  M 3  1 
O O  140 I = 1 , 6  
X 3 0 ( I  ) = X K E P (  I )  
D E L ' O ( I ) = Y C E L ( I )  

32 




140 


17 
C 
C 
C 

150 

C 
C 

C 
C 

C 
C 
C 

C 
C 
C 

190 
C 
C 
C 
C 

C 
C 
C 
C 

C O k T  I k U E  

DO 17 I ” = l r 6  

X T E ~ P ( ~ ) = e X 1 3 ( M ) - B X l 2 ( ~ )  

C O N T I N U E  


I N P U T / M 2 + t ‘ 3 r X 1 3 - X 1 2 U L T P L T /  X 2 3 r O E L 2 3  

C A L L  S U B 1  ( X T E K P  9 x 2 3  1 
D O  1 5 0  1 ~ 1 9 6  
X 2 3 ( I I = X K E P ( I )  
D E L ? 3 ( I ) = X C E L ( I )  
C O N T I  N U E  

COMOUTE E P S 1 0  E10=CtL2O+OEL30+M2/ltJl+M2~*UELl2+lt43/lMl+M3~ 
* O E L U 3  

00 190 I = l 9 6  
E P S 1 0 ~ 1 ~ = C E L 2 0 ~ 1 ~ + 0 E L 3 0 ~ 1 ~ + ~ 2 F 1 2 * C E L 1 2 ~ 1 ~ + ~ 3 F 1 3 * C E L 1 3 ~ 1 ~  

X A S T l O ( I ) = X l O ( I ) + E P S i O ( I )  


COMPUTE F P S U 2  E 1 2 = ( M 3 / ( ~ 1 + M 3 ) ) * D E L l 3 - ( M ~ / ( M 2 + ~ 3 ) ) * D E L 2 3  

33 



2 5 0  C O N T I N U E  
C 
C 
C 

C 
C 
C 
C 
C 
C 

260 


340 

3 4 1  

3 7 0  

3 8 0  

390 

69 


1 8  
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R l O = C S C R T ( R L O E Z )  
R 2 0 = D S G K T ( K 2 O E 2 )  
I F ( T P R ) 6 0 2 7 ~ 6 0 2 6 , h O i 7  

6 0 2 7  	C O N T I b U E  
T A U P = 4 . 0 C C O + T A U  
k R I T E ( 3 r 6 C C O ) R Z O  

6000 F O R " A T ( 1 I H  920(KY) = p C 1 6 . 8 )  
X R I T E ( 3 i t C O 1 )  T A U P  

6001 F O R M A T ( 1 1 P  F G U K  TALI  =,016.@) 
N R I T E ( 3 r 6 C O 2 )  C X ? O  

6002 F O R V A T ( 2 4 P  M A G  C F  R 1 0  C C R R E C T I U Y  
W R I T E ( 3 , 6 C 0 5 ) O E L T  

6005 F O R M A T ( 6 k  C E L T = r I J l b . U )  
6026 C O N T I N U E  

IF( S k T - 1 . C C O I  6024,  l C C l  t 6 0 2 4  
6024 R l O F 4 T = D A @ S ( G E L T )  

IF(RlOF4T)6021r6023~6C21 

6021 	R l O F 4 T = A T / R l O F 4 T  

I F ( Q l O F 4 T  - 6 . 0 C 0 ) 6 0 2 2 1 6 C 2 2 1 6 0 2 3  
6022 	TAU=TA U * . 5 C C O * ( ~ 1 O F 4 T + l . C O O )

I F ~ O N E D A Y ~ ~ T A U N + A ~ T A U + l ~ l D C O ~ ~ l C C O ~ l C O O v Y  

= r C l r j - i j )  

1006 
1000 	T A U = ( O N E U P Y - T A U N ) / A  

S W T = l . C O C  
GO TO 9 

1001 	T O T P A Y = T C T D A Y + O Q E C A Y  
T D A Y C U = ( T C T D ~ Y a C C T ) / 8 6 4 C C C C C  
S W T = O . C O C  
TI?lFG=TDbYCU 
W R I T E ( 3 , 2 C ) ( Y l O ( I  ) ~ I = l , S ) r T I P t U  
W R I T E ( 3 , 1 9 ) ( Y L 2 ( I ) ~ I = l r 6 )  
WRITE(3,19)(Y13(1),1=1,6) 

19 F O R P A T ( 1 P  ,6016.8)  
2 0  F O R ~ A T ( l b 0 , 7 1 ) 1 6 . 8 )  

2050 F O R v A T l i P  3024.16) 
W R I T t ( 3 , 2 a ) C X l O ~ K l O ~ K 2 0 ~ T I ~ E C ~ ~ O ~ ~ T  


28  F O K " A T ( 1 H  r 5 0 1 6 . 8 )  
I F ( T I M E M X - T D A Y C U ) l C O 3 ~ l C 0 3 ~ l C O Z  


1002 	C O N T I Q L E  
T A U N = O . D C C  
GO T U  6 0 2 4  

6 0 2 3  R l C F 4 T = b . C C O  
GO T U  6 0 2 2  

1003 IF(fJO4E.EG.l)GO T O  9 0 0  
65 	 C O h T I N U E  

S T O D  
E N D  

S I B F T C  S U R 1  L I S T v R E F r N C C E C K  
S U B Q O U T I h E  S U B 1  ( X s M )  
D O U P L E  P R E C  I S I OQ 

D X ( 6 ) r P " r
D E R R I T I M E D N ~ I T D N ~ I T O ~ A ~ C X ~ O ,  

D X ~ O I X L ~ * F ~ ~ ~ X T E M P V X K ~ P ~ X C E L T  

D S T 2 X 1 0 , S T 2 X l 2 ~ S T 2 X 1 3 ~ S T 2 X 3 0 r S T 2 X 2 3 ~  
D M 1 ~ " 2 ~ ~ 3 , ~ 1 2 , ~ 1 3 1 P 2 3 ~ ~ 2 F 1 2 ~ ~ 2 F 2 3 ~ ~ 3 F 1 3 ~ ~ 3 F 2 3 ~  

D C M L ~ C ~ V ~ C ~ T ~ Y l O ~ Y l 2 ~ Y l 3 ~ T I P E C ~ T I ~ E P X ~  
D T A U C t T A U , K l O ~ R 2 0 ~ T E ~ P ~ Q ~ K l C ~ Z ~ ~ Z C E 2 ~  
D L ~ C l ~ C 2 ~ C 3 ~ C E L T A ~ H ~ X F K l C ~ X A F R l O ~  

D X F R l 2 , X F R 1 3 ~ X F R 2 0 ~ X f R 2 3 ~ X F R 3 O ~ X A F R l 2 ~ X A F K l 3 ~ X ~ F K 2 O ~ X A F R 2 3 ~ X A F ~ 3 O ~  

D K E ~ I U , K S I , E T A ~ Z E T A , C ~ I , U ~ ~ , K ~ ~ , R ~ ~ , ~ ~ O , Z ,  
D K l O F 2 C ~ K 2 C E Z C , R l O C ~ R 2 O C  
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X D E L ( I + 3 ) = ( - K S I * L ) ~ ( C l * X ( I ) + C 2 * Z ~ T A U * X (  I + 3 )  ) / ( D E L T A * T A U )
X K E P L I ) = X ( I l + T A U * X [ I + 3 ) + X D E L ~ I )  
X K E P ( I + 3 ) = X ( I + 3 ) + X D E L ( I + 3 )  

40 CONTINUE 
RETURN 
END 

$DATA 
. 23621551UO6 
- 8 4 4 1 5 9 6 6 D C C  
- 2 2 8 4 1 8 9 5 D 0 6  
- 8 2 4 3 7 8 2 1 D C O  

- .31957216D08 
- .2862p154D02  

2.50-08 

NASA-Langley, 1968 -30 

- . 2 8 4 0 7 8 1 5 0 C 6  
- . 7 1 5 0 4 1 6 7 D - 1  
- . 2 8 t 1 2 3 1 9 D C 6  

.50@46563CCO 
- 1 3 6 4 2  131009 

- . 5 6 4 0 7 2 8 2 C C l  
1.D-C2 

- .15944798CO6 
- . 4 C 7 8 1 9 7 6 C - l  
- . 1 6 0 7 8 2 3 2 C 0 6  

.1@637202COO 

.59157903GO8 
- . 2 L 4 6 3 6 8 7 C C l  

1.oco1 179. DO0 
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